Solving Mixed-Integer Nonlinear Programs using Adaptively Refined Mixed-Integer Linear Programs
نویسندگان
چکیده
We propose a method for solving mixed-integer nonlinear programs (MINLPs) to global optimality by discretization of occuring nonlinearities. The main idea is based on using piecewise linear functions to construct mixed-integer linear program (MIP) relaxations of the underlying MINLP. In order to find a global optimum of the given MINLP we develope an iterative algorithm which solves MIP relaxations that are adaptively refined. We are able to give convergence results for a wide range of MINLPs requiring only continuous nonlinearities with bounded domains and an oracle computing maxima of the nonlinearities on their domain. Moreover, the practicalness of our approach is shown numerically by an application from the field of gas network optimization.
منابع مشابه
A Feasibility Pump for mixed integer nonlinear programs
Abstract We present an algorithm for finding a feasible solution to a convex mixed integer nonlinear program. This algorithm, called Feasibility Pump, alternates between solving nonlinear programs and mixed integer linear programs. We also discuss how the algorithm can be iterated so as to improve the first solution it finds, as well as its integration within an outer approximation scheme. We r...
متن کاملAlgorithms and Software for Convex Mixed Integer Nonlinear Programs
This paper provides a survey of recent progress and software for solving convex mixed integer nonlinear programs (MINLP)s, where the objective and constraints are defined by convex functions and integrality restrictions are imposed on a subset of the decision variables. Convex MINLPs have received sustained attention in recent years. By exploiting analogies to well-known techniques for solving ...
متن کاملForthcoming in Mathematical Programming CONIC MIXED-INTEGER ROUNDING CUTS
A conic integer program is an integer programming problem with conic constraints. Many problems in finance, engineering, statistical learning, and probabilistic optimization are modeled using conic constraints. Here we study mixed-integer sets defined by second-order conic constraints. We introduce general-purpose cuts for conic mixed-integer programming based on polyhedral conic substructures ...
متن کاملGeneral Solution Methods for Mixed Integer Quadratic Programming and Derivative Free Mixed Integer Non-Linear Programming Problems
In a number of situations the derivative of the objective function of an optimization problem is not available. This thesis presents a novel algorithm for solving mixed integer programs when this is the case. The algorithm is the first developed for problems of this type which uses a trust region methodology. Three implementations of the algorithm are developed and deterministic proofs of conve...
متن کاملA storm of feasibility pumps for nonconvex MINLP
One of the foremost difficulties in solving Mixed-Integer Nonlinear Programs, either with exact or heuristic methods, is to find a feasible point. We address this issue with a new feasibility pump algorithm tailored for nonconvex Mixed-Integer Nonlinear Programs. Feasibility pumps are algorithms that iterate between solving a continuous relaxation and a mixed-integer relaxation of the original ...
متن کامل